Copied to
clipboard

G = C2×C22⋊Q16order 128 = 27

Direct product of C2 and C22⋊Q16

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C2×C22⋊Q16, C235Q16, C24.176D4, C4⋊C4.2C23, Q8.37(C2×D4), C223(C2×Q16), C4.36C22≀C2, (C2×Q8).227D4, (C22×Q16)⋊5C2, C4.36(C22×D4), C2.4(C22×Q16), (C2×C4).218C24, (C2×C8).126C23, (C2×Q16)⋊36C22, (C22×C4).418D4, C23.849(C2×D4), (C2×Q8).16C23, (Q8×C23).12C2, Q8⋊C463C22, C22.115C22≀C2, C22⋊C8.170C22, (C22×C4).956C23, (C23×C4).538C22, (C22×C8).133C22, C22.478(C22×D4), C22⋊Q8.149C22, C22.99(C8.C22), (C22×Q8).464C22, C2.8(C2×C8.C22), (C2×Q8⋊C4)⋊21C2, C2.36(C2×C22≀C2), (C2×C4).1092(C2×D4), (C2×C22⋊C8).30C2, (C2×C22⋊Q8).51C2, (C2×C4⋊C4).579C22, SmallGroup(128,1731)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C2×C22⋊Q16
C1C2C22C2×C4C22×C4C23×C4Q8×C23 — C2×C22⋊Q16
C1C2C2×C4 — C2×C22⋊Q16
C1C23C23×C4 — C2×C22⋊Q16
C1C2C2C2×C4 — C2×C22⋊Q16

Generators and relations for C2×C22⋊Q16
 G = < a,b,c,d,e | a2=b2=c2=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 636 in 370 conjugacy classes, 124 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, Q8, C23, C23, C23, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, Q16, C22×C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C24, C22⋊C8, Q8⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8, C22⋊Q8, C22×C8, C2×Q16, C2×Q16, C23×C4, C23×C4, C22×Q8, C22×Q8, C22×Q8, C2×C22⋊C8, C2×Q8⋊C4, C22⋊Q16, C2×C22⋊Q8, C22×Q16, Q8×C23, C2×C22⋊Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C24, C22≀C2, C2×Q16, C8.C22, C22×D4, C22⋊Q16, C2×C22≀C2, C22×Q16, C2×C8.C22, C2×C22⋊Q16

Smallest permutation representation of C2×C22⋊Q16
On 64 points
Generators in S64
(1 52)(2 53)(3 54)(4 55)(5 56)(6 49)(7 50)(8 51)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 63)(18 64)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(33 44)(34 45)(35 46)(36 47)(37 48)(38 41)(39 42)(40 43)
(1 5)(2 64)(3 7)(4 58)(6 60)(8 62)(9 13)(10 39)(11 15)(12 33)(14 35)(16 37)(17 21)(18 53)(19 23)(20 55)(22 49)(24 51)(25 48)(26 30)(27 42)(28 32)(29 44)(31 46)(34 38)(36 40)(41 45)(43 47)(50 54)(52 56)(57 61)(59 63)
(1 59)(2 60)(3 61)(4 62)(5 63)(6 64)(7 57)(8 58)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 33)(17 56)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 44)(26 45)(27 46)(28 47)(29 48)(30 41)(31 42)(32 43)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 40 5 36)(2 39 6 35)(3 38 7 34)(4 37 8 33)(9 61 13 57)(10 60 14 64)(11 59 15 63)(12 58 16 62)(17 28 21 32)(18 27 22 31)(19 26 23 30)(20 25 24 29)(41 50 45 54)(42 49 46 53)(43 56 47 52)(44 55 48 51)

G:=sub<Sym(64)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,5)(2,64)(3,7)(4,58)(6,60)(8,62)(9,13)(10,39)(11,15)(12,33)(14,35)(16,37)(17,21)(18,53)(19,23)(20,55)(22,49)(24,51)(25,48)(26,30)(27,42)(28,32)(29,44)(31,46)(34,38)(36,40)(41,45)(43,47)(50,54)(52,56)(57,61)(59,63), (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,57)(8,58)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,56)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,44)(26,45)(27,46)(28,47)(29,48)(30,41)(31,42)(32,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,5,36)(2,39,6,35)(3,38,7,34)(4,37,8,33)(9,61,13,57)(10,60,14,64)(11,59,15,63)(12,58,16,62)(17,28,21,32)(18,27,22,31)(19,26,23,30)(20,25,24,29)(41,50,45,54)(42,49,46,53)(43,56,47,52)(44,55,48,51)>;

G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,49)(7,50)(8,51)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,63)(18,64)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,5)(2,64)(3,7)(4,58)(6,60)(8,62)(9,13)(10,39)(11,15)(12,33)(14,35)(16,37)(17,21)(18,53)(19,23)(20,55)(22,49)(24,51)(25,48)(26,30)(27,42)(28,32)(29,44)(31,46)(34,38)(36,40)(41,45)(43,47)(50,54)(52,56)(57,61)(59,63), (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,57)(8,58)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,56)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,44)(26,45)(27,46)(28,47)(29,48)(30,41)(31,42)(32,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,5,36)(2,39,6,35)(3,38,7,34)(4,37,8,33)(9,61,13,57)(10,60,14,64)(11,59,15,63)(12,58,16,62)(17,28,21,32)(18,27,22,31)(19,26,23,30)(20,25,24,29)(41,50,45,54)(42,49,46,53)(43,56,47,52)(44,55,48,51) );

G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,49),(7,50),(8,51),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,63),(18,64),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(33,44),(34,45),(35,46),(36,47),(37,48),(38,41),(39,42),(40,43)], [(1,5),(2,64),(3,7),(4,58),(6,60),(8,62),(9,13),(10,39),(11,15),(12,33),(14,35),(16,37),(17,21),(18,53),(19,23),(20,55),(22,49),(24,51),(25,48),(26,30),(27,42),(28,32),(29,44),(31,46),(34,38),(36,40),(41,45),(43,47),(50,54),(52,56),(57,61),(59,63)], [(1,59),(2,60),(3,61),(4,62),(5,63),(6,64),(7,57),(8,58),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,33),(17,56),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,44),(26,45),(27,46),(28,47),(29,48),(30,41),(31,42),(32,43)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,40,5,36),(2,39,6,35),(3,38,7,34),(4,37,8,33),(9,61,13,57),(10,60,14,64),(11,59,15,63),(12,58,16,62),(17,28,21,32),(18,27,22,31),(19,26,23,30),(20,25,24,29),(41,50,45,54),(42,49,46,53),(43,56,47,52),(44,55,48,51)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4N4O4P4Q4R8A···8H
order12···2222244444···444448···8
size11···1222222224···488884···4

38 irreducible representations

dim111111122224
type++++++++++--
imageC1C2C2C2C2C2C2D4D4D4Q16C8.C22
kernelC2×C22⋊Q16C2×C22⋊C8C2×Q8⋊C4C22⋊Q16C2×C22⋊Q8C22×Q16Q8×C23C22×C4C2×Q8C24C23C22
# reps112812138182

Matrix representation of C2×C22⋊Q16 in GL5(𝔽17)

160000
016000
001600
000160
000016
,
160000
016000
001600
00010
0001616
,
10000
01000
00100
000160
000016
,
10000
02000
00900
0001615
00001
,
10000
00100
016000
00010
00001

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,16,0,0,0,0,16],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,2,0,0,0,0,0,9,0,0,0,0,0,16,0,0,0,0,15,1],[1,0,0,0,0,0,0,16,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1] >;

C2×C22⋊Q16 in GAP, Magma, Sage, TeX

C_2\times C_2^2\rtimes Q_{16}
% in TeX

G:=Group("C2xC2^2:Q16");
// GroupNames label

G:=SmallGroup(128,1731);
// by ID

G=gap.SmallGroup(128,1731);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,456,758,2804,1411,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽